
1Adobe and its software: a resource document written by and © Conrad Taylor 2009

Introducing Adobe, its graphic model, and its software

Adobe Systems was founded in 1982 by John Warnock and Charles
Geschke, two computer scientists who until then had been working
at Xerox’s Palo Alto Research Center (PARC).

John Warnock is a mathematician with an interest in the visual arts:
he is a keen amateur painter. He studied mathe matics and philosophy
at the University of Utah. For his doctoral research, John Warnock was
advised by two professors in the Computer Science Department, David
Evans and Ivan Sutherland, who were pioneers of computer graphics
and simulation systems and ran their own computer graphics business.
His PhD described the ‘Warnock algorithm’, a recursive computational
method to generate halftone pictures from complex geometry –
which became significant in his later work on publishing systems.

Warnock worked for a while in the San Francisco office of Evans &
Sutherland, developing graphic simulation systems for training pilots
and astronauts. In 1978, he transferred over to Xerox PARC, joining the
Imaging Sciences Laboratory headed by Charles Geschke.

Xerox PARC was a remarkable laboratory in California’s Silicon Valley.
This is where the laser printer was invented in 1969; where LCD displays
and optical discs were also developed.

Bob Taylor ran the PARC Computer Science Laboratory, which had
a close relationship with (and recruited staff from) nearby Stanford
University’s ‘Augmentation Research Center’. This was where Douglas
Engelbart and his team had invented the computer mouse, email,
videoconferencing and hypertext.

The PARC Computer Science Laboratory in turn was the birthplace
of Ethernet, bit-mapped computer displays and the first computer
systems to use the Windows–Icons–Menus–Pointer system and the
desktop metaphor – things we now take for granted as standard for
computers, but quite revolutionary then.

A key achievement of Xerox PARC was the Xerox Star 8010 graphical
workstation, brought to market in 1981, conceived of as a networked
document preparation system with a WYSIWYG (‘what you see is what
you get’) document editor, and output to a laser printer. On the next
page you can see what the screen of a Xerow Star looked like.

Prehistory:
Warnock & Xerox PARC

2Adobe and its software: a resource document written by and © Conrad Taylor 2009

At PARC, Warnock worked on the issue of page description languages.
This was the problem that needed addressing: in the Star 8100, Xerox
had a fine workstation for creating documents. Xerox also made laser
printers. But how does the computer ‘instruct’ the printer which parts
of the page to mark with black, which parts to leave white?

For the Star project, Xerox used a data format called Press, but this
was thought to be too inflexible, and the InterPress project was set
up to invent a successor to Press, based on the idea of an interpreted
computer language. The elegant solution which Warnock worked on
involved installing in the laser printer its own specialised computer,
to which a set of drawing instructions could be sent, written in a
special computer language. The embedded computer has the job of
interpreting the instructions to create a raster image (one made up of
laser-printer spots), and so it is called a raster image processor.

Frustratingly for Warnock and Geschke, Xerox management on the
East Coast were not interested in developing and commercialising
InterPress. They wanted Xerox to play to its strengths as a copier and
printer company, and thought the whole Star project was an expensive
failure (only 25,000 units were ever sold).

In 1982, Warnock and Geschke resigned from Xerox and set up their
own little company in nearby Mountain View, with the aim of creating
a printer-control system that would realise the potential of InterPress.
They called their company Adobe Systems after the nearby Adobe
Creek, and set to work creating a flexible, powerful and expressive page
description language – PostScript. In parallel, they worked on devising
the PostScript Interpreter (the software which creates a raster image by
interpreting PostScript commands), and the hardware to run it on.

Warnock and Geschke
from Xerox to Adobe

The Xerox Star 8100 workstation,
introduced in 1981, was a pioneering
desktop publishing system. However,
a single workstation cost $16,000, and
a viable networked system for a small
office, with file-server and laser printer,
cost about $100,000, so the Star was
not a commercial success and this
discouraged Xerox management from
experimenting further in computing.

The ideas behind the Xerox Star were
revealed to Apple boss Steve Jobs and
Apple engineers during visits to Xerox
PARC, and this led directly to Apple’s
development of the Macintosh.

3Adobe and its software: a resource document written by and © Conrad Taylor 2009

The first thing to say about PostScript as a computer language is that
although it is possible to learn the language and write programs in it,
the job of writing programs that will result in printed pages is not a job
for humans!

Suppose you create a page in a word processor, and you want to print it
to a PostScript printer. When you print, choosing that printer calls up a
PostScript printer driver – a program that your word processor uses to
create a description of the page in the PostScript language. That Post-
Script file then travels to the printer, where the raster image processor
interprets the PostScript commands, and prints the page.

In developing PostScript, John Warnock drew on some of the ideas from
his PhD thesis, and some earlier work he had done on a simulation of
New York harbour for an Evans and Sutherland project. His key idea was
to describe all of the content of pages for printing not as collections of
spots, but at a much more abstract level – as geometry.

Warnock was determined that this would even be true of typefaces.
Xerox publishing systems had stored each character in their fonts as
an array of dots – in other words the Xerox fonts were ‘bit-maps’. This
was very limiting. For example in a Xerox system one might be able
to typeset text in 10 pt, using the 10 pt collection of dots, or in 12 pt,
using the 12 pt collection of dots – but if you wanted 11 pt type and no
matching collection of dot-patterns had been provided, you could not
have that size. (Nor could you set type at an angle, or in another shade
or colour other than black.)

Warnock decided that in the PostScript system, a font would be created
as a collection of geometrical images, made up of straight lines and
curves. In fact, a PostScript font would itself be a PostScript program,
stored in memory chips on the printer’s controller board, which could
be called on when it was needed.

Here is a tiny PostScript program that selects a typeface, scales it to
20pt, gets it converted into bitmaps for that size (‘setfont’), defines the
co-ordinates of a starting point on a page (‘moveto’), typesets a few
words, and prints:

%!PS
/Helvetica-Bold findfont
20 scalefont
setfont
72 500 moveto
(A few words I want printed) show
showpage

Adobe PostScript,
and its fonts

4Adobe and its software: a resource document written by and © Conrad Taylor 2009

PostScript, Macintosh
and desktop publishing

While PostScript was being developed, much encouragement came
from Steve Jobs, one of the co-founders of Apple Computer. Apple
was at the time developing two new kinds of computer, the Lisa and
the Macintosh. Both these designs evolved in a direction inspired by
visits that the Apple engineering team had made to Xerox PARC: they
adopted the bit-mapped display, mouse, windows, icons and so on
that had been developed at Xerox PARC.

The Apple Lisa, launched in 1983, was in some respects a more sophis-
ticated machine than the Macintosh; but at $9,995 it sold slowly – and
it ran pretty slowly too. Steve Jobs championed the rival Macintosh
design, which was released in January 1984, initially at a price of $1,995,
and later on at well over two grand. Which is a lot, for a machine with
only 128k of RAM and no hard disk.

The risk was that the Mac would be regarded as just a toy, not a serious
business machine. It had a suite of free software bundled, all written by
Apple – MacWrite, MacPaint and MacDraw; but at first it proved difficult
to persuade software houses to port their business software over to
Mac. Initial sales of the Mac were promising, but then began to fade.

Arguably, what saved the Macintosh was PostScript! Apple wanted
to add a networked laser printer to their product range: it was central
to their concept of the ‘Macintosh Office’. Steve Jobs decided it would
have to be a PostScript printer – indeed, the first PostScript printer. The
PostScript interpreter board (that is, the computer inside the printer)
actually ran faster and had more memory installed than any Macintosh.
Because of this, and licensing fees paid to Adobe, the LaserWriter was
expensive ($6,995).

However, in an era when local area networks were rare, and hard to set
up, the Mac and LaserWriter came ready for instant networking. You
could easily link a dozen Macs and a LaserWriter with LocalTalk cabling
– this made the LaserWriter affordable for a workgroup, or for a graphic
design studio.

The LaserWriter had a printing resolution of 300 dots per inch: that was
not fantastic, but good enough for newsletters, flyers and other kinds
of print job. But that was just a hardware limitation – the PostScript
imaging system is resolution-independent. Adobe also had another
customer – Linotype – who built a 2,540 dpi laser imagesetter with a
PostScript RIP. This meant that you could use a LaserWriter as a proof
printer, and get high-quality output from the same file by sending it to
a PostScript imagesetting bureau.

5Adobe and its software: a resource document written by and © Conrad Taylor 2009

And then came desktop publishing. The flexibility of PostScript
printing, and the graphical interface of the Macintosh, encouraged
developers to create page make-up software, especially when the Mac
512k came along with just enough memory to get the job done.

The term ‘desktop publishing’ itself was coined by Paul Brainerd, who
developed PageMaker for the 512k Mac and released it to the market in
July 1985. In the same year, Manhattan Graphics released Ready,Set,Go!
and QuarkXPress came along in 1987.

Nor was the new method of publishing confined for long to the Mac.
In 1986, another ‘graduate’ from Xerox PARC, John Meyer, released
Ventura Publisher for IBM-compatible PCs. Later, when Microsoft
developed Windows to a point where it was useful, PageMaker and
QuarkXPress also came across to the PC.

What had seemed a gamble when Warnock and Geschke gave up their
jobs at Xerox PARC was now paying off. The PostScript bandwagon was
on a roll. Linotype released their font library in PostScript format, and
other manufacturers of laser printers and high-resolution imageset-
ters adopted the PostScript way of doing things. In this period, all of
Adobe’s income came from licensing the PostScript system and selling
fonts – they did not have any software to sell to end users until 1987.

6Adobe and its software: a resource document written by and © Conrad Taylor 2009

The Bézier curves
as used by Adobe

Recall that on page 3 above we noted that John Warnock chose to make
PostScript font characters geometrically, using straight lines and curves.
To be more precise, he decided to use Bézier cubic curves. These are
the curves which we draw with when we use Illustrator’s pen tool.

Pierre Étienne Bézier was a French engineer who worked for over four
decades at Renault, for whom he developed a computer-aided design
automobile system called UNISURF. He needed to be able to work with
subtle curves – not just arcs, which are segments of circles, but curves
which vary their curvature along their length. It’s important for vehicle
body design, and it turns out to be very handy for drawing typefaces,
too. Suitable candidates were curves formed by quadratic equations,
and cubic equations. (But we are interested in how Adobe uses Bézier
curves, so we will forget the quadratic versions!)

Cubic equations can be turned ‘inside out’, so that the parameters
which determine the shape of the curve are represented as four points
on a two-dimensional plane:

A

B

C

D

A Bézier cubic curve segment.
A and D, the points which begin and
end the curve segment, are called the
‘anchor points’. B and C, which sit off the
curve but control its shape, are called
the ‘control points’.

The location of these points is of course represented by their x and y
co-ordinates, which are numerical values – and that is very tasty fare
for a computer! To store this curve in computer memory, all we need
are these four sets of co-ordinates. The curve in a sense ‘does not exist’,
but drawing software like Illustrator can render it on the screen or on
the printer whenever it is required.

The beauty of Bézier curves for computer drawing is that they are a
perfect complement to having a graphical screen and a mouse pointing
device. The mouse can be used to place the points on the drawing, and
drag them around to adjust the shape afterwards. Though it does take
time and practice before handling them becomes instinctive…

7Adobe and its software: a resource document written by and © Conrad Taylor 2009

How four points are
made into curves…

A

B

C

D

e

h i

j

f

g

How can four points be turned by a computer into visible, printable
curves? It’s actually quite a trivial task and involves applying the same
process again and again…

For the computer, it is very easy to find a ‘mid-point’ between ❖

any two points. One simply calculates the average of the x and y
co-ordinates of the two points, and that generates your mid-point.

In the diagram above, the mid-point between ❖ A and B is e,
that between B and C is f, and that between C and D is g.

We can repeat the process to obtain mid-points between ❖ e and f
(that’s h) and f and g (that’s i).

Finally, the mid-point between ❖ h and i is j, and that point is sitting
on the curve.

Another way of looking at it is that we have divided the Bézier ❖

curve segment into two segments. A, j and D are anchor points,
and e and h, i and g are the new control points.

We can now have the same process repeated to the two derived Bézier
curve segments, to produce four – and repeat that again to produce
eight, sixteen, thirty-two, sixty-four… This process of repeating the
same function is called ‘iteration’ and it was key to the solution that
John Warnock came up with for his PhD thesis work.

The trouble is that iteration can literally go on for ever. But it doesn’t
need to. What we interested in is generating a polygon between the
accumulating anchor-points – one that is sufficiently fine-grained that
it represents the curve ‘well enough’. And then you get the computer to
stop obsessing.

When should it stop? It depends on the resolution of the surface that
you are constructing the drawing on. For a computer screen, that’s only
about 80 to 100 pixels per inch. For a laser printer, it is six times higher
and that requires running the iteration a few more times.

8Adobe and its software: a resource document written by and © Conrad Taylor 2009

From font design to
Adobe Illustrator

anchor point

Bézier control point

At Adobe, they created a drawing program so that they could draw the
outlines of the type characters they were creating for the PostScript
printing system, as shown above. Of course there is more to creating a
computer font than just drawing the shapes – there is other software
involved in that.

For typefaces to work properly, the ‘counters’ (spaces in the middle, like
the gap in the letter p above) must be transparent. For this, Adobe uses
a special form of path grouping, called a ‘compound path’.

In April 1987, Adobe announced the launch of their first offering of
boxed software. Adobe Illustrator was based on their font-drawing
tool, with extra features added. At first it ran only on the Macintosh,
and the first version could draw only in shades of grey; the following
year ‘Illustrator 88’ came out and could prepare CMYK artwork for
commercial colour printing.

There were sporadic attempts to port Adobe Ilustrator to other kinds of
computer (NeXT, Irix, Sun workstation) but these were not commercially
successful; and the first version which gained acceptance on Windows
was version 7.

On the Macintosh, its main competitor was Freehand, created by Altsys
and marketed by Aldus, then later by Macromedia. On the Windows
platform, its main competitor was CorelDRAW!

9Adobe and its software: a resource document written by and © Conrad Taylor 2009

Along comes
Photoshop

Most of the computer applications which Adobe sells were not actually
invented in-house. Photoshop was the brainchild of a PhD student
at the university of Michigan – Thomas Knoll. Photoshop started as
a project to display greyscale images on the purely black-and-white
bitmapped display of a Macintosh Plus.

Thomas’ brother John, who worked in movie special effects at George
Lucas’ Industrial Light & Magic, persuaded him to develop the software
into a proper editor for raster graphics (that is, graphics which are made
up as an array of pixels, as generated by a scanner).

John Knoll gave a demo of the software to staff at Adobe; they decided
they would like to purchase the licence to distribute it. Photoshop 1.0
came out for the Macintosh in 1990 and rapidly became the graphic
arts industry tool of choice for adjusting and improving digital raster
images, making montages and fantasy images, etc.

In 1991, Version 2 (still Mac only) added a Bézier-curve Pen tool, at the
time the only way to make a raster image of a non-rectang ular shape
was by saving it with a PostScript ‘clipping path’, and the pen was intro-
duced to create these vector-based clipping paths.

In 1992, Photoshop 2.5 arrived, and a version for Windows was released.
Version 3.0 which came out the following year was a highly significant
release because it introduced Layers. At last it was possible to have a
multi-layered Photoshop file, and this made montage creation much
easier. Before that, once you had pasted a new element into the image,
it merged with the background!

Photoshop started out as a program that worked purely with raster
image data (clipping paths being the sole exception), but this has
changed rapidly and significantly since 2000 (version 6.0). Type is now
in vector format and remains fully editable; vector shapes can also be
created on their own layers.

Photoshop users have long used the software’s own format (.psd)
to store their artwork, but have converted to another format for use
in print, on the Web or in presentations and multimedia. This began
to change when Adobe created their own page make-up software,
 InDesign, which can place native Photoshop files without them need-
ing to be converted.

10Adobe and its software: a resource document written by and © Conrad Taylor 2009

Acrobat and PDF make
their appearance

The next major venture by Adobe Systems was the invention of the
 Portable Document Format, a project with which John Warnock
was again very much personally involved. In many ways PDF is a re-
implementation of the same computer graphics data model as Post-
Script, but in a way that creates relatively compact files for ‘document
exchange’. PDF files are easy to send over electronic network links, and
view on any computer that has the Acrobat Reader software installed.

Whereas PostScript is a full programming language, PDF is more like
a graphic file format. PostScript files have to be interpreted in entirety
before pages can be presented for viewing (i.e., printed), but PDF files
are organised hierarchically as nested sets of objects, which means
for example that one page can be quickly viewed independently of
the other pages. Nevertheless, everything that can be represented in
a PostScript file (and given the demands of publishing, that means
everything you might want to put on a page!) can also be faithfully
represented in a PDF file.

Originally, the Acrobat suite of software in 1993 had four components.
Acrobat Exchange was the application for viewing PDF files and inter-
acting with them; it was sold with PDFWriter, which pretended to be a
printer driver, and could do a decent, convenient job of producing PDF
so long as you used no PostScript graphic files (such as an Illustrator
.eps file) in your publication.

Distiller was the ‘professional’ application for converting PostScript
files into PDFs: it offered better control and could process all PostScript
graphic contents. To create a PDF using Distiller, you would ideally set
up your publishing application as if you were going to print to a Post-
Script printer, but get the PostScript saved to disk instead of sending
it to the printer. Then, you would feed the PostScript file to Distiller to
have it converted into PDF.

Adobe also supplied Acrobat Reader, a view-only application which
could not make editorial changes to PDF files. This was initially sold
at $50 or local equivalent. But Adobe had to re-evaluate its marketing
model pretty quickly when take-up of PDF was extremely slow. It made
a lot more sense to give the Reader away for free, to encourage people
to download and install it, because having a large user base of free
Readers out there is an incentive for document producers to save their
documents as PDF for posting on Web sites.

Acrobat Catalog came along with version 2.0 (1994). It lets you build a
search index for a collection of PDF files and search against them all.

Acrobat components

11Adobe and its software: a resource document written by and © Conrad Taylor 2009

Font simulation or embedding: If you transfer an electronic docu-
ment in an original format such as Microsoft Word or Powerpoint, and
the recipient doesn’t have the same fonts that you used to create it,
not only will they not see the document as you intended it, but font
substitution may cause havoc with line endings and page breaks. To
avoid this, Acrobat was designed to do one of two things:

The font’s name and ‘metrics’ would be captured (i.e. the width ❖

and stroke weights of all the letters), so that the Acrobat software
used to view the file could generate a simulation using either a
generic serif or sans-serif font. It might not be a faithful repro-
duction, but at least the type would occupy the same space.
This was useful as a way to keep the filesize down at a time when
bandwidth was limited, but later versions of Acrobat discontinued
this method.

Or, the font data could be embedded into the PDF, to guarantee ❖

that it would be used to render the document. Optionally, one
might save on filesize through ‘subsetting’, which embeds only the
characters that have actually been used.

Data subsampling and compression: This is the main reason why
PDF files are smaller than the sum of all the files used to generate the
original document. All of the text content of the file, and all of the
geometrical elements such as boxes and vector graphics, have fairly
standard, lossless data compression techniques applied to them.

The situation is more complex when it comes to raster-based images
such as photographs, captured screen images, or scans of line drawings.
Potentially these are quite massive chunks of data! In the process of set-
ting up Distiller or another application to save a document as a PDF, you
can choose various settings for image subsampling and compression.

Subsampling ❖ is like using Image Size commands in Photoshop.
It reduces the number of pixels in the image. As a result, the
subsampled image will not have as much detail. For professional
printing, you should not subsample colour or greyscale images
below 300 dpi, or line-drawing scans below 1200 dpi. But if you are
just sending a low-resolution proof copy or parking a download-
able version on a Web site, you might be happy to reduce the pixel
resolution in exchange for a smaller file for downloading.

Compression ❖ for raster images, if you choose to ask for it, can be
done either in a ‘lossless’ or a ‘lossy’ manner. Lossless compression
does not help you much with continuous-tone greyscale or colour

Acrobat & PDF features
and developments

12Adobe and its software: a resource document written by and © Conrad Taylor 2009

images such as photographs, but it can be effective for images
that have flat colour (such as a screen-shot of a computer dialogue
box) or for a scan of a line drawing.

In the case of photographs, it is best to use the JPEG compression ❖

method, which offers a sliding scale of quality settings. At JPEG
maximum quality, the images compress to about half their filesize
and quality is not noticeably compromised for most images. If you
apply heavier compression settings, the result will be a smaller PDF
file – but you may regret the nasty little artefacts (like a scattering
of dots) around edge details.

Another way of reducing the size of a file is to have all of the colour ele-
ments and images converted to the Red-Green-Blue colour model from
Cyan-Magenta-Yellow-Black. This shouldn’t be done for PDFs being sent
to commercial print.

Security: Adobe was aware that people might want to send sensitive
documents in PDF format, or might want to restrict what people can
do with them. You can set two levels of password protection for a PDF
document. One won’t even let the recipient view the file unless they
have the password. A separate password gives access to controls where
you can say, for example, that people can read a document on screen
but can’t print it; or that they can read or print but not annotate it or
change it in any way.

Annotations: Over the years the main Acrobat application (not the
Reader) has added the ability to add ‘sticky note’ annotations and
highlighting to PDF documents. This is useful for collaborative editing
or proofreading.

Interactivity: From an early stage, PDF had hypertext-style linking
and you could use the main Acrobat program to set regions which,
when clicked on, you jump you to another page view within the same
document. Later, support for external links (Web URLs) was added. It is
now even possible to embed sound files or video clips into PDF files, or
some kinds of three-dimensional images which can be grabbed with
the mouse and rotated.

Graphics features: The Portable Document Format has gone through
a number of revisions to support increasingly advanced data structures
in graphic files. For example, in early PDF there was no support for
transparency in graphics files, except that produced by clipping paths
and masking. This made it impossible for PDF files to contain drop
shadow effects, which depend on partial transparency.

13Adobe and its software: a resource document written by and © Conrad Taylor 2009

Suitability for transferring jobs to printing services: The first
few versions of PDF were OK for reading on screen, proofreading, or
sending to an office printer, but PDF sadly lacked some of the features
required for delivering a job for professional print output. These short-
comings were addressed around the turn of the century, and now most
printers prefer to have publication ‘artwork’ sent to them as PDF.

One development that encouraged this trend was when printers
stopped printing out films, taping them together into ‘flats’ on light-
boxes and contact-printing the manually assembled films to litho press
plates. Once they started acquiring direct-imaging platesetters instead,
they needed a way to impose the page data into plate groups electro-
nically. The ‘object’ data structure of a PDF file makes it ideally suitable
for tearing apart into separate pages and organising into plate groups.

Sending PDFs to printing services involves taking responsibility and
knowing what you are doing. All colour photos should be in CMYK
format, for example, unless you are advised otherwise. More recent
versions of Acrobat include ‘Preflight’ tools to check that files are OK to
send. Standards bodies in the graphic arts have also developed subsets
of the PDF standard that can be guaranteed printable – such as PDF/X.

Using PDF as a graphic file format: Over time, some publishing
applications such as InDesign, FrameMaker or QuarkXPress have had
graphics import filters added to them so that a PDF file can be imported
as a kind of image file with mixed vector and raster elements, and with
all of its fonts embedded.

Initially there were only two ways to make a PDF file: print through
PDFWriter, or print PostScript to disk and distill it. More recently, other
methods have come along. The most straightforward method is if a
computer graphics application has an inbuilt ability to save in PDF
format directly. This is now true of InDesign, Illustrator and Photoshop.

PDF has been integrated into how the graphics rendering system for
Apple Macintosh OS X (called ‘Quartz’) works. Mac OS X has a represen-
tation for graphics that is closely aligned with PDF, and when you go
to Print in a Mac application, saving as PDF is one of your options. The
Preview application is also a PDF viewer.

Thomas Merz of PDFlib in Germany developed some C programming
libraries that generate PDF. There are database applications that have
licenced Merz’s libraries to generate PDF bank statements, for example.
Serif Software also use PDFlib for saving PDF from their DTP software.

Other ways of making
PDF files

14Adobe and its software: a resource document written by and © Conrad Taylor 2009

Adobe’s need for
InDesign

By the late 1990s, Adobe Systems had a well established reputation
among graphic artists on account of Illustrator and Photoshop.
Where Adobe was doing far less well was in the field of page
make-up and multi-page document publishing software.

In 1994, Adobe Systems did a merger with Aldus Corporation, Paul
Brainerd’s company which had developed PageMaker. Effectively,
Adobe took over Aldus, and in the process they acquired PageMaker.
Now at last they had a page make-up program.

But PageMaker had been slow in solving some of the key problems
in CMYK commercial colour printing, and when Quark brought out
QuarkXPress 3.2 and then 4.0, it was clear the graphic arts crowd –
designers, typesetters and commercial printers – were abandoning
PageMaker in favour of Quark.

In 1995, Adobe also purchased Frame Technology Corporation, the
developer of the respected FrameMaker software for publishing
technical documents. Adobe and Frame had a long history of working
together, and all of Adobe’s software manuals were made using Frame-
Maker. But this was not software that could be sold to graphic designers
and magazine publishers.

Additionally, both PageMaker and FrameMaker were ‘long in the tooth’.
They both needed a total rewrite, but when software projects are that
complex and that established, the effort of scrapping everything and
starting to code from scratch is a horrifying prospect.

Adobe decided to produce a ‘Quark killer’ and the project codenamed
K2 started work. It was released as InDesign 1.0 in 1999. Some of the key
features of the program were as follows:

The InDesign application is structured within Adobe’s own graphic ❖

environment, making as little use as possible of system libraries
from either Macintosh or Windows. For example InDesign writes its
own PostScript and PDF output.

InDesign consists of a core services module, and most of the ❖

tools are provided by plug-ins. This modular arrangement, rather
than one monolithic application, makes code development and
maintenance easier.

Adobe aimed in particular at providing superior typography, with ❖

a multi-line composer to decide where line endings should fall,
integration with OpenType, and Unicode encoding to support a
very wide range of languages.

15Adobe and its software: a resource document written by and © Conrad Taylor 2009

InDesign and the
Creative Suite

It took a while for InDesign to ‘find its feet’; the first couple of versions
did not attract much market share. InDesign started to draw the atten-
tion of Mac-using designers when Version 2.0 came along in early 2002,
because it could run under Apple’s new-version operating system, OS X.
Also, this version could handle true transparency in images, and could
add drop shadows.

Then Adobe tried a new marketing tack to make inroads into Quark’s
market share. They already had mindshare in the graphic design world
because of Illustrator and Photoshop; now they would bundle these
programs up with InDesign as the ‘Creative Suite’ and sell the bundle at
an attractive price. Adobe also offered generous terms to move up from
PageMaker (which would not be developed further). InDesign also can
open and convert existing PageMaker and QuarkXPress files, which is
another way to smooth the transition to InDesign.

Initially, the Creative Suite concept was not much more than a market-
ing tool, but with later versions there has been more and more true
integration between the CS products. For example, you can copy
objects from Illustrator and paste then into InDesign, and components
remain editable. Photoshop .psd files can be imported or pasted into
InDesign documents – and so on.

The earlier versions of InDesign favoured the design of relatively
unstructured, design-led documents such as magazines and posters.
Later versions have added more structural features such as tabular data
display, footnotes, Table of Contents and Index generation for books.

InDesign’s underlying use of Unicode to store text, and its ability to
work with Unicode-encoded fonts that have many character shapes
(glyphs) in them, make it a strong contender for multilingual publish-
ing. For example, it is easy to work in Greek or Russian, or with the
appropriate keyboard support, Chinese or Thai. There is a plug-in
system from a third party that enables typesetting in Indic languages.
For right-to-left typesetting, however (Hebrew, Arabic) there is a special
Middle East version of InDesign.

In the last few years, many design companies and publishing houses
have made the switch-over to InDesign. It also helps that InDesign can
natively write PDF files that are suitable for sending for commercial
printing.

