

This PDF document

Horrocks_needham2005.pdf

 may be posted in various locations: one reference location is http://www.conradiator.com/downloads/

Ontologies and the Semantic Web

A lecture by Professor Ian Horrocks

Introduction

The Roger Needham Award, which is sponsored by Microsoft Research, is an annual prize

established by the BCS in memory of the late Professor Roger Needham

1

. It is awarded for a

distinguished research contribution in computer science by a UK-based researcher, within

ten years of receiving his or her PhD.

The Roger Needham Award consists of a financial prize, plus the opportunity to present

a lecture. The Roger Needham Lecture for 2005 was delivered at the Royal Society on

7 December 2005 by Professor Ian Horrocks, a member of the Information Management

Group at the School of Computer Science of the University of Manchester.

“Today’s Web is good, but it’s not good enough”

Professor Horrocks started his lecture by introducing the thinking behind the Semantic

Web. The idea of the Semantic Web has arisen from a critique of the existing Web.

Obviously the Web has been tremendously successful, is used by an unprecedented

number of people for a computer system, and is extremely useful. However, it can also

be very frustrating to use, and the reason is because it is a very simple artefact, scarcely

more than distributed hypermedia. Finding useful information on the Web is quite a

hit-and-miss process – a mix of keyword-based searching, plus some browsing around.

The information on the World Wide Web has been designed for human consumption.

The annotations that website creators add to information – the mark-up – is intended to

tell our browsers how to present it on the screen. As humans, we are able to make sense

of the structure and significance of the information with reference to how it is laid out.

This relatively simple model for the Web wasn’t what Tim Berners-Lee, the English scientist

who was central to developing the Web, had in mind for it – or so he now tells us, at any

rate. Tim says that he always intended the Web to be a set of connected applications

forming a consistent logical web of data. The idea was that data would have well-defined

meaning, and this would enable computers and people to work on the data together, in

co-operation. This vision of what the Web perhaps always should have been, and where we

hope it’s going in the future, is what has become known as the

Semantic Web

.

1. Roger Needham, 1935–2003, was Professor of Computing Systems at the University of Cambridge and also head of its Computer

Laborarory. In 1997 he left the University and became the first director of Microsoft Research in Cambridge.

Report of the Roger Needham Lecture – 7 December 2005

An account prepared in collaboration with Ian Horrocks
by Conrad Taylor of the BCS Electronic Publishing Specialist Group

How this report was prepared: An audio recording was made of Ian Horrocks’ lecture; this and the accompanying Powerpoint
slides were made available to Conrad Taylor of BCS-EPSG, who wrote up this account, supplementing it with notes, references
and background explanations. These were then checked by Ian Horrocks and amended accordingly. Conrad Taylor also redrew
some diagrams, and replaced the original cartoons used in the lecture slides to avoid problems of copyright.

Ontologies and the Semantic Web – a British Computer Society lecture by Professor Ian Horrocks

© 2005 Ian Horrocks, Conrad Taylor and the British Computer Society

2

Problems with today’s ‘Syntactic Web’

Why might we want a Semantic Web? By way of illustration, Ian gave an example of the

kind of thing that can go wrong using today’s Web (we might call it the ‘Syntactic Web’). On

one occasion when preparing slides for a talk, Ian had wanted to acknowledge some

people he had worked with: Peter Patel-Schneider, Frank van Harmelin and Alan Rector.

He went looking for images of these three men using Google Image Search. Simply by

typing

 Peter Patel-Schneider

 into Google, Ian found an image of him, and a picture of Frank

was just as easy to track down. But when he typed in

Alan Rector

 he got an image of a priest

in vestments, a total stranger – not what he wanted at all. It is quite easy to figure out why

this happened. Google had found a Web page featuring the Reverend

Alan

 M Gates, an

associate

rector

 at the Church of the Holy Spirit, Lake Forest, Illinois. Which is the sort of less

than useful result that keyword searching against unstructured text often returns.

2

We can imagine more complex tasks that turn out to be very difficult or even impossible

using the existing Web. A Manchester colleague of Ian’s pointed out one such example.

She had been searching for information about animals that use echo-location, but that

are neither bats or dolphins. (Barn-owls, for example, use echo-location for night hunting.)

But if you try even quite a sophisticated keyword-search – something like “animal sonar

NOT bats NOT dolphins” – you are likely to eliminate almost every page that would be

relevant to your search task, because such pages will usually mention either bats or

dolphins, as well as these other animals you are interested in.

As for everyday use of the Web, it’s nice that we can now book a holiday while sitting at our

computers, but it can also be frustrating. You move from one site to another, comparing

prices or itineraries… the sites all ask you to enter the same information – the day you’re

travelling, the day you’re coming back… It would be really nice to automate this kind of

process, but with the existing Web it is difficult, because the sites that provide these

services are designed for human beings, not for machines to use.

Computers are increasingly used for performing scientific experiments; a practice that’s

being called ‘e-science’. For example, a biologist may have a DNA sequence, and might

want to identify genes in the sequence, determine which proteins would be produced

by those genes, and then figure out which biological processes these genes control. Now,

there are resources on the Web that can perform these functions – databases and other

tools – but it’s difficult to put them together to perform this kind of experiment, certainly

in any automated way. Biologists and other scientists are therefore spending a lot of time

devising Perl scripts to bolt these systems together. It would be nice if we could do it more

automatically, and find these kinds of services more automatically, said Ian.

Some articles about the Semantic Web, such as the famous article in

Scientific American

 by

Tim Berners-Lee, James Hendler and Ora Lassila,

3

 express some quite ambitious goals for

what we might want from it: for example, to be able to delegate complex tasks to software

‘agents’, such as to book a holiday somewhere warm, not too far away, and where they

speak either French or English. “I’m not sure I really believe in this happening in the very

2. To be fair to Google, they have made certain policy changes since Ian performed this search. Now, if you type in

Alan Rector

, those

pages will be presented first where the words appear closest together, and Professor Rector’s page is top of the list.

3.

The Semantic Web

 by Tim Berners-Lee, James Hendler and Ora Lassila. Scientific American, May 2001.

Ontologies and the Semantic Web – a British Computer Society lecture by Professor Ian Horrocks

© 2005 Ian Horrocks, Conrad Taylor and the British Computer Society

3

near future,” said Ian. “I hardly trust

myself

 to book a holiday – I’m not sure I’d trust a

computer program to do it for me! But we can think of these goals as a grand challenge

for what we might like to do with the Web in the future – a sort of robo-football of the

Semantic Web.”

Extending the job that mark-up does

Why is it so difficult to carry out these kinds of automated tasks with the World Wide Web?

Presenting us with a BCS Web page as an example, Ian pointed out that the function of the

HTML mark-up is to do such things as make some of the text stand out visually by being

bold and blue, and to make other parts of the page function as hypertext links to other

resources. As for the semantic content of the page – what it actually means – it is easy for

us humans to figure it out, but very difficult for a machine to understand. One would need

to equip machines with natural language understanding at the very least. And some of the

information is buried inside images: even more of a challenge.

The proposed solution is to add

explicit semantic annotations

 to Web resources: that is,

annotations which say something about what the information means. Going back to his

‘Alan Rector’ versus ‘Alan the Rector’ example, Ian showed how additional mark-up might

improve the chances of being able to process the text more accurately:

Dr.

<Person>

Alan Rector

</Person>

,

<Job>

Professor of Computer Science

</Job>

,
University of Manchester

Rev.

<Person>

Alan M. Gates

</Person>

,

<Job>

Associate Rector

</Job>

 of the
Church of the Holy Spirit, Lake Forest. Illinois.

Giving semantics to annotations

Adding annotative mark-up like this does make the purpose of information a bit easier

to understand, a bit more machine-handleable, but Ian thought that by now we might

be asking “But – where do the semantics come in?” After all, so far it looks as if all we have

done is to push the problem one level back, from a problem of understanding natural

language to a problem of understanding the language in the labels. “Painting labels on

everything isn’t immediately going to solve the problem,” said Ian.

One of the most obvious solutions is to try to establish external agreements about the

meaning of a suitable set of labels. An good example of this approach is the Dublin Core

Metadata Initiative. This approach depends upon standardisation activity: people go off

into committees, decide that they want a set of tags such as <Author> and <Subject>

and <DatePublished> and so on, and the community then uses those standardised tags.

What’s wrong with this? Well, it provides quite limited flexibility and extensibility, and it

puts a rigid limit on the number of things that can be expressed by the metadata scheme.

It’s also rather a cumbersome process, because every time you want to annotate some new

domain, you have to a set up a committee and wait several years until they come back with

a standardised list of tags to use.

An alternative approach has been taken for the Semantic Web: instead of agreeing on a

language for annotation, it has been decided to agree on

a language that can be used

to specify the meaning of annotations

. This is where the idea of ‘ontologies’ comes in.

If we can agree on an ontology language, we can use it to build up a specification of the

Ontologies and the Semantic Web – a British Computer Society lecture by Professor Ian Horrocks

© 2005 Ian Horrocks, Conrad Taylor and the British Computer Society

4

meaning of a set of tags created for use in a given domain. New terms can then be formed

by combining the existing ones; the meanings of these terms can be formally specified;

and because the terms are defined in a common ontology language, terms can be

combined or related across multiple ontologies.

Background to ontologies

In introducing the history of the idea of ontology, Ian reckoned computer scientists should

probably apologise to philosophers for having stolen another word from them – and for

having misused it into the bargain. “Well, computer scientists are always do that; we like to

steal these interesting-sounding words from other domains!” he said.

Ontology, as defined by philosophers, is the most fundamental branch of metaphysics.

It is concerned with being (existence), and aims to determine what entities and what

types

 of entities actually exist, and thus to classify the structure of the world. Within the

Western philosophical tradition, ontology was founded by the work of Plato and Aristotle.

Ian showed us a diagram proposed by a later philosopher, Porphyry, and known in the

Middle Ages as the

Arbor Porphyriana

4

 (See Fig.1). ‘Porphyry’s Tree’ presents a structure

of the kinds of thing that exist, organised by what the mediaeval philosophers called

differentiae

, their distinguishing features. For example, material things that are ‘bodies’

can be distinguished by being either animate, in which case they are ‘living’, or inanimate,

in which case they are ‘mineral’.

Information scientists take a more pragmatic view of the world: for them, an ontology is

an engineering artefact. It consists of a vocabulary, which we use to describe a domain –

or at least, some particular view of the domain. It is from this vocabulary that we can derive

tags for use in a Semantic Web context. An ontology also has a mechanism for providing

an explicit specification of the intended meaning of the vocabulary. This often includes

4. Porphyry (232–304 CE) was a follower of the Neoplatonist philosopher Plotinus who integrated Aristotle’s work on ontology

within Neoplatonism. His influential hierarchical diagram of being, the ‘Arbor Porphyriana’ or ‘Porphyrian Tree’, was taken up

into Christian thinking through the works of the 6th century philosopher Boethius – and inspired the basis of later classification

schemes, such as in biology.

SubstanceSupreme genus:

material immaterialDifferentiae:

BodySubordinate genera:

animate inanimateDifferentiae:

LivingSubordinate genera:

sensitive insensitiveDifferentiae:

AnimalProximate genera:

rational irrationalDifferentiae:

Human

Spirit

Mineral

Plant

BeastSpecies:

Socrates Plato Aristotle etcIndividuals:

Fig. 1
Porphyry’s Tree

Ontologies and the Semantic Web – a British Computer Society lecture by Professor Ian Horrocks

© 2005 Ian Horrocks, Conrad Taylor and the British Computer Society

5

classification-based information, not unlike what Porphyry and the other philosophers had

been doing. An ontology also lets us capture constraints which give us some background

knowledge of the domain.

Ian felt it was appropriate at this point to stress two factors that are essential if ontologies

are going to be of any practical use:

●

An ontology should capture a shared understanding

. Those ontologies that are

really proving successful in applications are those that have been developed by

groups of experts working in a domain, and capture their shared understanding of

the meaning of the terms that they use to describe artefacts in their domain.

●

As computer scientists, we’d like our ontology to provide a

formal model

 – most

importantly, one that can be manipulated by machines.

Ian showed an example of an ontology built using a tool called Protégé, developed at

the Stanford Medical Informatics laboratory:

5

 one of the many ontology editing tools

now available. The example ontology he showed (see Fig. 2 below) was about pizzas –

they use it for teaching at Manchester University. The vocabulary is displayed down the left

side of the screen: one of the terms there is

RealItalianPizza

. Another panel (bottom centre)

shows a specification of what a real Italian pizza is – simply, a pizza whose

CountryOfOrigin

is

Italy

. The ontology also captures some background information about real Italian pizzas,

which is that their base should always be

ThinAndCrispy

.

Ontologies in the real world

The pizza example is, of course a ‘toy ontology’, but Ian was keen to stress that ontologies

have a wide range of practical applications in the real world these days. In bioinformatics,

several standardisation groups are building ontologies to describe important domains in

biology. One example is the GO project, the Gene Ontology;

6

 another is the ontology being

developed by MGED, the Microarray Gene Expression Data Society.

7

5. Protégé, written in Java and therefore runnable on any machine that provides Java 1.4 support, is a free, open-source ontology

editor. See http://protege.stanford.edu/

6. The Gene Ontology — http://www.geneontology.org/

7. MGED home page – http://www.mged.org. Their ontology project: http://mged.sourceforge.net/ontologies/index.php

Fig. 2

A ‘toy ontology’ about pizzas,
used in teaching at Manchester
University. Shown here inside
Protégé software.

Ontologies and the Semantic Web – a British Computer Society lecture by Professor Ian Horrocks

© 2005 Ian Horrocks, Conrad Taylor and the British Computer Society

6

Biologists use these ontologies to describe information, the results of experiments and

so on. Ian then showed us a diagram from an ‘in silico’ biology experiment, about the

structure of some proteins; next to it, he displayed within a Protégé screen the ontology

which was built to capture and represent knowledge about the structure of proteins in

that particular protein family.

Medical practice has a very long history of using ontologies. SNOMED, NCI and GALEN

are ontologies in serious day-to-day use. Whenever you see your doctor, it’s likely he or she

will spend much of their time with you typing stuff into the computer. At least part of what

they are typing will be SNOMED codes, or information that will be translated into SNOMED

codes. These codes describe both the various ailments that you may be suffering from, and

also the procedures that doctors carry out. One of the drivers for the development of these

ontologies is the cost of medical insurance: insurance companies use SNOMED codes to

determine how much money the doctor gets for carrying out each procedure.

Ian also showed an ontology used to annotate experiments coming from visualisation of

the human brain. The parts of the brain are described extremely precisely: in the sample

screen he showed, some medical expert had written down in great detail exactly what the

‘precentral gyrus’ is, together with a wealth of background material about it. This ontology

is being used, for example, in research that aims to automate the labelling of brain cortex

structures in MRI images.

Many organisations are now using ontologies

Organisations such as the United Nations Food and Agriculture Organization, General

Motors, Lockheed Martin and many others use ontologies to organise complex, semi-

structured information. NASA has an interesting application using ontologies to organise

the incredible volume of information they have about the Space Shuttle. This is a really

serious problem for them because the Shuttle is such old technology now that the original

designers and engineers have long since retired, making it difficult to get access to the

information that they need to solve problems when they arise. Ian remembered seeing a

specification for one printed circuit board with wires connecting locations; and they have

to maintain several pages of regulations describing just what you are and are not allowed

to do in repairing one of these wires should it break.

Ordnance Survey uses ontologies in the context of geographical information systems data

(GIS). They have very detailed maps of the UK and they’d like to exploit this data in many

different ways. For example, they are very interested in information about flood-plains, and

they’d like to be able to annotate their map information with semantic tags that would

help them to deduce where flooding is likely to occur. This is also driven, at least in part,

by financial considerations, because insurance companies want to know if you live in an

area where flooding is likely – and bump up your insurance premiums accordingly!

There are numerous military and government applications of ontologies. And of course

there is the Semantic Web – and what is being called the ‘Semantic Grid’, a semantically-

enhanced vision of the ‘Grid’ system of networked computational resources for e-Science.

In these domains, ontologies are being used to provide the vocabulary for tags to annotate

the data and services which are out there on the Web, and to make these computational

services more accessible to automated processes.

Ontologies and the Semantic Web – a British Computer Society lecture by Professor Ian Horrocks

© 2005 Ian Horrocks, Conrad Taylor and the British Computer Society

7

Standardisation for the Semantic Web

The functioning of the Web depends upon standards, such as HTTP and HTML. So, if people

are going to build ontologies to work in the context of the Web – where interchange and

interoperability are important – the languages used to describe them will also need to be

standardised. This was foreseen right at the beginning of work on the Semantic Web, and

people started working on the development of suitable languages.

One of the first of these languages to emerge was RDF, and with it came

RDF Schema

,

which is the metadata schema for RDF. RDF Schema is immediately recognisable as an

ontology language. It talks about Classes and Properties, Sub- and Super-classes, Range

and Domain and so on. But the problem with RDF Schema, said Ian, is that it’s very weak: it

doesn’t allow you to express many things. Many features are missing – features that people

building complex ontologies for use in domains like medicine, biology and so on would

need. In RDF Schema, there are no constraints relating to existence or cardinality; there

are no transitive, inverse or symmetrical properties; and there is no way to constrain

resource descriptions by localised range or domain. Therefore there are aspects of these

complex ontologies that RDF can’t express.

“The other funny thing about RDF,” said Ian, “is that it has a kind of ‘higher-order’ flavour,

with not a very standard semantics, which makes it difficult to provide reasoning support.”

Different groups looked at RDF Schema and they liked the basic idea, but felt that some

more expressive and well-founded language would be better suited to application in

the Semantic Web. A group based in Europe developed an ontology language called OIL;

another group working mainly in the US developed DAML-ONT. They merged their efforts

to produce ‘DAML+OIL’ – hardly a satisfactory name, but by this point it was clear that

the project would be moving forward into a standardisation process of the World Wide

Web Consortium, the W3C, which is the organisation that deals with all of the standards

related to the Web, such as HTTP and XML and so on.

Within the W3C standardisation process, the project was handled by the Web Ontology

Working Group, and the name that emerged was the

Web Ontology Language

 –

OWL

for short. True, it perhaps should have been ‘WOL’ – but the team preferred the sound

of ‘OWL’. And as Ian pointed out, Owl in A. A. Milne’s children’s stories about Winnie the

Pooh used to write his name WOL: “He could spell his own name WOL, and he could

spell Tuesday so that you knew it wasn’t Wednesday…”

OWL is now an official W3C recommendation – which means, in effect, it’s a standard.

Description logics

All of these languages – OIL, DAML+OIL and OWL – are based on

description logics

, and

Ian turned next to an explanation of description logics – a subject close to his heart.

Description logics are a family of logic-based knowledge representation formalisms and

they are descendants of

Semantic Networks

 (circa 1970) and

KL-ONE

 (circa 1985), the

latter being an attempt to give more formality to Semantic Networks.

8

 These logics adopt

an object-oriented model, similar to the model Ian had been showing us with respect to

ontologies. They describe a domain in terms of classes, or ‘concepts’ as they are usually

Ontologies and the Semantic Web – a British Computer Society lecture by Professor Ian Horrocks

© 2005 Ian Horrocks, Conrad Taylor and the British Computer Society

8

called in description logics; relationships between pairs of objects, which are called ‘roles’

in description logics; and the individuals which are instances of the classes.

The crucial advantage of description logics is that they also have operators that allow you

to build complex descriptions out of simple ones that you already have. This makes it easy

to extend your expressive vocabulary.

By way of explanation, Ian presented a typical description-logic example:

In this definition of

HappyParent

, a ‘happy parent’ is said to be exactly equal to parents all

of whose children are either intelligent or athletic. “Of course, this doesn’t have to be true,”

said Ian, “but at least it is precisely specified! Which means, if we want to have an argument

about this proposition, we know what we are talking about.”

The concept of

HappyParent

 is built up on the right side of the definition using class names

(

Athletic

,

Intelligent

,

Parent

,

HappyParent

 are all classes of individuals). The example also

contains one relationship – the

hasChild

 relationship. There are several operators that we

use to combine these various components into one large description – we have AND, we

have OR, and we also have the universal qualifier that says ALL of the children have to be

either intelligent or athletic. Finally, we give a name (

HappyParent

) to this big description,

and thus new vocabulary is introduced, with precise specification of what we mean by that

new term in the vocabulary.

One of the things that distinguishes description logics over some earlier knowledge

representation systems is that they have a formal semantics, and they really are a logic.

Typically they are given a standard first-order ‘model theoretic’ style of semantics; in fact

they are almost invariably decidable fragments of first-order logic, often contained in the

C

2

 (two variables with counting quantifiers) fragment. Description logics are also closely

related to some other well-known decidable fragments such as Propositional Modal and

Dynamic Logics, and the Guarded Fragment.

Semantics and Reasoning

To give an example of why we should be concerned with semantics and reasoning, Ian

showed us an example of a semantic network: the kind of artefact that motivated work

on description logics and a more precise characterisation of the semantics. The example

specified an animal which is a cat and is called Felix; he is black, and sits on a mat.

To a human being, this looks fine: Felix [is-a] cat; a cat [is-a] animal; Felix [sits-on] a mat; and

cat [has-colour] black. But in some respects it is ambiguous and insufficiently specified;

there are several possible interpretations. Does this mean that black is the only possible

colour for cats, so all cats have to be black, all over? Does it mean that cats have to have part

of their colour black, but that they could have other colours as well? Or it could just mean

that black is a permissable colour for cats to have, but not all cats need be black, and we

8. A good introduction to the history of development of description logics that explains the Semantic Network and KL-ONE

initiatives, delves all the way back to Porphyry and forward to OWL, is John F. Sowa’s paper

Semantic Networks

 —

http://www.jfsowa.com/pubs/semnet.htm

Ontologies and the Semantic Web – a British Computer Society lecture by Professor Ian Horrocks

© 2005 Ian Horrocks, Conrad Taylor and the British Computer Society

9

might have a non-black cat? The development of description logics was driven by the

desire to develop this kind of object-oriented knowledge-representation language, but to

pin down

exactly

 what everything means in logic, and give you the opportunity to express

all of these options – and to know which of them it is that you are saying.

Description logics are also distinguished from earlier knowledge representation systems

in that it was always intended that they would be processed by computers. There was

always the intention to provide inference services based on decision procedures for key

problems; and in particular we would be able to compute satisfiability, so we could tell

when some class had a consistent definition, or if it was so over-defined that you could

never have an instance of that class.

In fact the intention was to implement systems that could go away and think about what

we’d written down, and derive implicit information for us wsithout human guidance. If, for

example, we know that John is a happy parent, and that Mary is a child of John, and Mary

isn’t athletic, we should be able to build a system that we can ask “Is Mary intelligent?” –

and have the system answer that for us. If we were to query the system for a list of names

of intelligent people, we’d like to get Mary back as part of the answer. This requires having

some reasoning system that can deal with this information.

Based on years of research

Ian emphasised that the reason why we can do these things now, and the reason why

a language like OWL could be built based on description logics, was because of a huge

depth of existing research, more than 15 years of work, and countless papers published

in the field. It is this basis that has allowed OWL to become the language that it is. The well-

defined semantics for OWL (in particular, OWL DL) was inherited directly from description

logics and from standard first-order semantics.

“We understand the formal properties of the description logic underlying OWL,” said Ian.

“We know it’s actually in a quite nasty complexity class, but we know that it’s decideable.

We know about reasoning algorithms – and you can find papers that will tell you how to

implement a program to do this kind of reasoning task I was just talking about.”

There are also reasoning systems available which people can get hold of and use in their

applications. One is FaCT++, a Description Logic classifier that is a development of FaCT

(‘Fast Classification of Terminologies’) – built at Manchester, and still free. There are now

also commercial reasoners such as Cerebra, a commercialisation of an earlier reasoner that

Ian’s team built at Manchester; and Racer, developed by STS, jointly based in Germany and

Canada. (The existence of commercial software is one index of the maturity of the field.)

All this foundational research was crucial to the design of OWL, and informed the working

group at every stage. Ian hinted at the kinds of debate that had gone on within the W3C

Web Ontology working group. “There are always these people who take a sort of Heath

Robinson approach, who tell you it’s obviously harmless to extend the language with this

feature or that: they would end up with a language that looked like

this

, with all kinds of

bells and whistles on.” And to stress the point, Ian showed a cartoon of an Heath Robinson

style aeroplane with all sorts of ridiculous extras fitted (see top of next page).

Ontologies and the Semantic Web – a British Computer Society lecture by Professor Ian Horrocks

© 2005 Ian Horrocks, Conrad Taylor and the British Computer Society

10

This is where the many years

of previous research came to

the rescue. “When we were

designing OWL, we were able

to prevent that by being able to

come back with answers such as,

No, if you have Feature X you’ll

crash into a big tree

.” Usually the

problem (the ‘crash’) that Feature

X or Y would introduce was that

it would make the language

undecideable, and it was always

a prerequisite of OWL that the

language should be decideable.

SHOIN and OWL

Description logics have some strange names, and the description logic that underlies

OWL DL is called

SHOIN

. Why SHOIN?

The reason is straightforward. Description logics are a family of formalisms, and they are

mainly distinguished from each other by the operators that you have for putting things

together to make descriptions like the ‘happy parent’ example Ian had previously shown.

●

‘S’

 stands for an extension of the standard basic Description Logic (known as ALC)

that has been augmented with the ability to characterise certain roles (what in OWL

are called ‘properties’) as being transitive.

●

To this is added the ability to express a hierarchy not just of classes but also of roles

(so, you can say things like ‘having a daughter’ is a sub-property of ‘having a child’).

This is denoted with

‘H’

.

●

‘O’

 stands for nominals, which means you can enumerate the members of a class;

for example, you can introduce a class like ‘European Union’ and then define that

as [Italy + France + Germany +…] You can also define classes as being singletons.

●

‘I’

 is for Inverse Roles: e.g. you can define that ‘is child of’ is the reverse of ‘has child’.

●

‘N’

 stands for Number Restrictions, which means you can define a numerical

restriction on the relationships (via properties) that members of a class may have.

Fig 3:

What happens when you try to add too many
features… (cartoons by Conrad Taylor)

Ontologies and the Semantic Web – a British Computer Society lecture by Professor Ian Horrocks

© 2005 Ian Horrocks, Conrad Taylor and the British Computer Society

11

If you put all these letters together, you get

SHOIN

, which is therefore the name by which

the logic that underpins W3C’s Web Ontology Language is known.

Ian next presented a slide of ‘Class/Concept Contructors’, bristling with logic notation

symbols (see Fig. 4 above). “You can’t come to a talk by a description logic person without

seeing one of these slides,” he said. “These are the constructors that are available… the

main interesting feature is that I can describe the whole language in this one slide.” The

system uses just eight constructors; it can be described very succinctly; it’s very elegant;

and it is compositional, so you can build complicated descriptions from these basics.

Ontology and Knowledge Bases

The term ‘ontology’, when used in the context of the Semantic Web, is identical to what

workers in Knowledge Representation and description logics would call a

Knowledge

Base

.

A Knowledge Base consists of sets of axioms. Some of the axioms describe the

structure

of concepts in a domain. In description logics, this set of axioms is typically called the

TBox

(the Terminological Box), for example ‘a parent is someone who has a child’. Another set

of axioms is usually collectively known as the

ABox

 (the Assertional Box): these are data

axioms, or ‘ground facts’, such as ‘John is a happy parent’ or ‘John has a child who is Mary’.

The TBox and the ABox axioms – the schema and data, if you like – combine to constitute

the Knowledge Base, and an OWL ontology could be said to be not much more than a web-

friendly presentation of a SHOIN Knowledge Base.

It’s worth noting that when we build an ontology, unlike in a database, we don’t throw

away the schema when we have finished the design process. We keep the schema around

and in play, because we can use it for performing interesting inferences about data. For

example, we can infer that Mary is intelligent, based on the knowledge that Mary is a child

of John, that John is a happy parent, and that Mary’s not athletic. This inference requires us

Figure 4 – Class and Concept Constructors in SHOIN description logic

Ontologies and the Semantic Web – a British Computer Society lecture by Professor Ian Horrocks

© 2005 Ian Horrocks, Conrad Taylor and the British Computer Society

12

to refer back to the schema, from which we can understand the implications of the

definition there of what constitutes a ‘happy parent’.

The OWL RDF/XML Exchange Syntax

An essential task of the 3WC Web Ontology working group was to come up with a Web-

friendly syntax for OWL. As the example in Figure 5 above shows, this involved translating

a reasonably concise syntax into a very verbose one conforming to XML syntax.

Ian commented about the OWL version on the right, “Machines of my acquaintance assure

me that they understand this extremely well. But humans – I recommend you don’t show

them this stuff.” Yet, if you look at the example carefully, you can see that there is a clear

correspondence. The class shows an intersection of

Parent

, and it has a restriction on the

hasChild

 property so that all of the values are either

Intelligent

 or

Athletic

.

Why ontology reasoning?

Why might we want to do reasoning with ontologies? One motivation is that, given the key

and growing role of ontologies in many applications, it is going to be essential to provide

tools and services to help users to design and maintain high-quality ontologies.

For example, we might want automated help so that

users can decide whether the classes in an ontology

they are developing are meaningful or not. By way of

illustration, Ian presented an example ontology (used

in his teaching) which talks about animals. Within this,

there is a concept called ‘

mad cow

’.

The definition of a ‘mad cow’ is – a

cow

 that eats a

brain

that’s a part of a

sheep

. But if we use a reasoning tool

like Pellet

9

 against the ontology that includes this

axiom, we are told ‘this is an unsatisfiable concept’.

9. Pellet is an ontology reasoner, often used as a debugging tool, for example in the Web Ontology browser/editor ‘Swoop’. See the

paper Swoop: Design and Architecture of a Web Ontology Browser (/Editor) by Aditya Kalyanapur – http://www.cs.umd.edu/

scholarlypapers/papers/swoop.pdf. (Note also the tendency to contrive names related the behaviour of owls!)

<owl:Class>
 <owl:intersectionOf rdf:parseType="
collection">
 <owl:Class rdf:about="#Parent"/>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasChild"/>
 <owl:allValuesFrom>
 <owl:unionOf rdf:parseType=" collection">
 <owl:Class rdf:about="#Intelligent"/>
 <owl:Class rdf:about="#Athletic"/>
 </owl:unionOf>
 </owl:allValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

Fig. 5

The OWL RDF/XML syntax
below the line is equivalent
to the assertion above the
line. More verbose… but
machines can process it!

Ontologies and the Semantic Web – a British Computer Society lecture by Professor Ian Horrocks

© 2005 Ian Horrocks, Conrad Taylor and the British Computer Society 13

Why unsatisfiable? The Pellet tool will even provide an explanation: in this case it will tell

you that ‘mad cow’ is a concept inconsistent within the ontology, because the ontology

states that mad cows eat sheep brains, sheep are animals, cows are vegetarians, and

vegetarians are not allowed to eat things that are either animals or parts of animals. Now,

if these are your definitions, obviously you could never have a ‘mad cow’! Because there

is a logical contradiction present in the concept, you could never have any instances of it.

Information like this is very useful for someone designing an ontology.

It’s also useful to help domain experts to understand if an ontology correctly captures their

intuition of the domain. Ian gave the example of a little girl, who is a domain expert in

sweets and puddings. She believes that banana splits should be defined as a sub-class of

fruit sundaes. This domain expert will want help from the system, to check whether or not

the ontology that it computes according to these descriptions really corresponds to her

own intimate knowledge of the domain. Similarly, a domain expert might want to know

if there is redundant vocabulary (synonyms) – e.g. is a banana split exactly equivalent to a

banana sundae? If this is the case, should the ontology contain both names?

Finally, and very importantly, we really need reasoning if we are going to carry out queries

over ontology classes and instances. If we want to retrieve data that has been annotated

using the ontology, such as asking for ‘all intelligent people’, then we need to do reasoning

against the data and the schema together in order to be able to retrieve individuals like

Mary, who are only implicitly intelligent, not explicitly annotated as such. It is performing

practical tasks like this which is the raison d’être of the Semantic Web, after all.

A research challenge: increasing expressive power

Anyone who has worked in knowledge representation knows that users are never satisfied

with the language that you give them: they always want more expressive power. OWL is

quite expressive, but it has to be admitted that there are still things you can’t express in

OWL. For this reason there is a lot of ongoing research into how to extend the ontology

language to be able to express more complex things.

For example, something that is required a great deal in complex physically-structured

domains such as medicine and biology is the ability to say more complicated things about

properties and their definitions. OWL gives us a rich language for building up classes, but it

doesn’t allow us to say much about properties yet. A well known example is the case of the

hasUncle property, which, intuitively, we might want to define in terms of the properties

hasParent and hasBrother. This is not possible yet using OWL.

In many practical applications you need to be able to talk about concrete values – integers,

reals, geographical locations and so on – and you need to be able to do things with those

values, such as to compare them. For example, you may want to define a class of people

whose income is greater than their expenditure; and you can’t do that in OWL.

People often ask for database-style keys: for example, you may want to express that the

make plus the model plus the chassis number gives you a unique identifier for vehicles;

again, you can’t do that now in OWL.

A current very hot topic is how to add rule language extensions on top of OWL, and there

is a newly-established W3C Working Group looking at this. There are various different

Ontologies and the Semantic Web – a British Computer Society lecture by Professor Ian Horrocks

© 2005 Ian Horrocks, Conrad Taylor and the British Computer Society 14

flavours of rule language extension that people have been working on: for example

SWRL, a Semantic Web Rule Language that extends OWL towards First Order Logic.
10

(Rule languages typically allow more expressive statements about properties – binary

predicates – and would, for example, allow hasUncle to be defined in terms of hasParent

and hasBrother.

Scaleability problems

Users also want OWL processing to go much faster. Improved scaleability is always a

challenge for reasoning systems that have very high worst-case complexity, and so there is

a great deal of ongoing research into optimisation techniques.

One approach suggested is reduction to disjunctive Datalog (a database query language),

which would allow Logic Programming techniques to be used to deal with the large

numbers of ground facts that are likely to be found in many practical applications. Others,

including Ian himself, have suggested hybrid DL–DB systems that marry a Description

Logic reasoner to a relational database management system to handle domains that have

a very high volume of instance data. The database would be used to store all the ‘Abox’

axioms, derived inferences would be cached back to the database, and database queries

would be used to retrieve answers to (most) logic queries: thus precomputing and caching

would increase performance at query time.

There’s also some very interesting work going on studying smaller description logics,

in particular languages for which polynomial-time reasoning algorithms are available.

Although these languages are much less expressive than OWL, they are adequate for many

practical applications, and of course they allow for much more efficient computation.

Tools and infrastructure developments

Another active area of work is in the development of tools and infrastructure. Many editing

tools are around today – for example Oiled, Protégé, Swoop, Construct and Ontotrack –

and more are being developed. It is quite clear that the adoption of a standard ontology

language has provided a real impetus, encouraging people to invest the effort required

to build these tools. The same can be said of reasoning systems, such as Cerebra, FaCT++,

Kaon2, Pellet and Racer.

Non-standard inferences is another very interesting area for development. For example, an

ontology designer might want to have the system compute a ‘simple’ concept definition

that precisely characterises a given set of individuals.

Finally, design methodologies for ontologies are also attracting a great deal of attention:

in comparison with the great amount of knowledge that has been accumulated about

how to set about designing a database, relatively little is yet known about how you should

set about designing an ontology and what the methodology should be. In this area, work

on foundational ontologies – top-level ontologies – is one potential way forward.

Ian concluded his lecture with a summary, and acknowledgements to his co-researchers,

and opened the session for questions and contributions from the audience.

10. Submission to W3C re SWRL FOL — http://www.w3.org/Submission/2005/01/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (For max compatibility)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

